Calculadora de integrales indefinidas - Calculadora de antiderivadas online

La calculadora de integrales indefinida es una estupenda herramienta para estudiar y comprender la rama de las matemáticas dedicada al calculo integral. Para usar nuestra calculadora de antiderivadas online solo debes ingresar la función que deseas integrar, luego elegir el diferencial en función de la variable independiente y por último presionar el botón verde «calcular». La solución se desplegará de forma automática en un nuevo recuadro.

Calculadora de integrales

(   )  


   


Calcular


Como nuestro objetivo es que domines a la perfección el calculo integral, junto a la calculadora de integrales te ofrecemos a continuación una recopilación de los conceptos básicos relacionados con la integración de funciones.

¿Que es el Calculo integral?

El cálculo integral es la parte del cálculo que permite hallar una determinada función cuando se conoce su tasa de cambio. Por ejemplo, si la velocidad de una pelota es una función en el tiempo conocida, entonces podemos conocer su posición en un momento dado después de ser lanzada. Llamaremos integración al proceso de encontrar la función original, dada su derivada, es por ello que las integrales también son conocidas como antiderivadas.  Es decir que si F’(x) = f(x), podemos decir que F(x) la antiderivada de f(x).

antiderivadas

Dicho lo anterior, podemos indicar que el cálculo integral es el estudio de la integración y de los distintos métodos para evaluar integrales. 

¿Qué es una integral?

Una vez dicho lo anterior, podremos inferir que una integral es la operación matemática que permite integrar una determinada función para hallar su función primitiva.  Matemáticamente podemos expresar la función `F(x)`, como la antiderivada de la función `f(x)` utilizando la siguiente notación:

f ( x ) d x = F ( x ) + c , donde c  es la constante de integración

En la notación anterior ∫ es el símbolo de integración, `f(x)` es el integrando y `F(x)` junto a la constante de integración, representa la función primitiva.

Tipos de integrales

Las integrales puenden clasificarse en dos grandes ramas, integrales indefinidas e integrales definidas. A continuación pasaremos a definir cada uno de los tipos de integrales:

Integrales indefinidas

Una integral indefinida es el proceso de hallar la antiderivada de una función, sin llegar a evaluar el resultado utilizando algún intervalo. La integral indefinida es el principal componente del cálculo integral, ya que sienta las bases para poder cálcular integrales definidas. La notación empleada para definirlas es la misma presentada más arriba para definir una antiderivada.

Integrales definidas

Una integral definida es el proceso calcular la antiderivada, y evaluarla en un determinado intervalo. Formalmante podemos definir una integral definida como se presenta a continuación:

Suponiendo que la función`f(x)` es continua en el intervalo `[a,b]`, y asumiendo que `F(x)` es la antiderivada de la función `f(x)`, tenemos que:

a b f ( x ) d x = F ( x ) | a b = F ( b ) F ( a )

Tabla de integrales

A contunuación te presentamos una tabla con las integrales básicas. Si lo deseas puedes descargar una versión más completa, solo haciendo click aquí.

tabla de integrales